
Data Sheet

The Guide to Building
a Custom Databricks
Notification System

5201 GREAT AMERICAN PARKWAY, SUITE 320
SANTA CLARA, CA 95054

Tel: (855) 695-8636
E-mail: info@lumendata.com

Website: www.lumendata.com

https://lumendata.com/

Utilize Databricks REST API: Databricks offers a REST API that allows you to
integrate with various notification channels. We can develop custom scripts that
leverage the API to send alerts to Slack, PagerDuty, or any other supported
channel upon job failures.
Databricks notebooks for alerting: Create Databricks notebooks specifically for
monitoring purposes. These notebooks can query the Databricks job history API
and other relevant endpoints to identify issues and trigger custom notifications
using the REST API calls.
Custom alert conditions: While built-in options are limited, explore using
Databricks python-based scripts within notebooks to define custom alert
conditions. This allows for more granular alerts based on specific job metrics or
failures.
Utilize Databricks Widgets: Databricks widgets can be used to create custom
dashboards that display job health and other relevant metrics. These
dashboards can be configured to trigger alerts based on certain conditions.
Third-party integrations: Consider third-party tools that integrate with
Databricks and offer more advanced notification functionalities. These tools can
provide features like customizable notifications, priority levels, and automated
workflows based on alerts.

At Lumendata, we built a custom solution utilizing the platform's robust REST API.
This API grants programmatic access, allowing the construction of a more granular
alerting system.

Notification Alerting in Databricks:

Notification Alerting in Databricks:

01

This data sheet talks about solutions that can create a more informative
notification system for Databricks workloads. It explains how to build a

custom Databricks notification system using Python and the Databricks API.
The techniques discussed in the sheet can help transform Databricks alerting

for effective job monitoring and improved workflow efficiency.

Modular Design with Alert-Specific Notebooks: We developed a modular
design, employing separate notebooks specifically tailored for alert generation.
These notebooks interact with the Databricks job history API and potentially
other relevant endpoints to extract critical data.
Custom Metrics and Dynamic HTML Alerts: Beyond basic success/failure
notifications, our solution empowers the definition of custom alert conditions
using Databricks python-based script within the notebooks. This enables us to
generate alerts based on specific job metrics or tailored failure scenarios. This
approach goes beyond the limitations of basic email notifications by generating
comprehensive, HTML-formatted alert emails. These informative reports provide
a clear view of the health of your recent Databricks jobs, like a comprehensive
operational report.

Job Run Summary Table: The email body features a table containing details about
the 5 most recent Databricks job runs. Each table row captures the following
attributes:

Run ID: Unique identifier for the job run.
Job ID: Unique identifier for the Databricks job.
Run State: Indicates whether the job run was successful (highlighted in green) or
failed (highlighted in red).
Run Name: User-defined name assigned to the Databricks job.
User Name: Username of the individual who triggered the job run.
Run Duration: Total time taken by the job run to execute.
Start Time: Timestamp representing when the job run commenced.
End Time: Timestamp representing when the job run concluded.

02

Failure Details: The email also includes a section dedicated to failed jobs. It lists
the Run ID, Job ID, error message, and a link to the corresponding run page URL
for each failed job run.
This email notification serves as a concise report providing insights into the
execution status of recent Databricks jobs. It facilitates monitoring job health and
pinpointing potential failures that necessitate further investigation.

NOTE: The JOB-RUNS are configurable through code. For testing and example
purposes we have hardcoded the value to last 5 Job runs.

Code Walkthrough and Workflow: Import necessary python libraries required in
databricks NB. Select Notebook language as python.

Overall Workflow:
The script initialization.1.
It retrieves Databricks access token and workspace URL.2.
Calls helper functions to validate credentials, configure the API request, and
define the number of jobs and job runs to fetch.

3.

Fetches details about the most recent job runs from the Databricks API.4.
Finally, it sends an email notification with a summary of the retrieved job run
details.

5.

03

Databricks API Configuration:
These lines set up the credentials needed to interact with the Databricks REST
API.
databricks_access_token: This variable stores personal access token, which
grants programmatic access to Databricks workspace. We can obtain this token
from your Databricks settings.
databricks_instance: This variable holds the URL of our Databricks workspace.

Function Calls:
setup_databricks_api_token_and_endpoint: This function validates the access
token and workspace URL and returns the API endpoint and any error messages
encountered.
setup_databricks_job_api_config: This function constructs the API URL, headers,
and payload (data) required to fetch job run details. It also defines two global
variables:
num_of_jobs: This variable sets the maximum number of jobs to retrieve
(currently set to 5).
num_of_job_runs: This variable specifies the maximum number of runs to fetch
per retrieved job (currently set to 5).
fetch_databricks_job_runs: This function sends an API request to Databricks and
retrieves information about the most recent job runs based on the configured
parameters.
send_email_notification: This function takes the list of retrieved job runs and a
list of recipient email addresses and sends an email notification summarizing the
job run details.

Error Handling:
The try-except block attempts to execute the main code. If any exceptions
(errors) occur, the except block catches the error message, prints it, and then
raises the exception for further handling.

Function Name: setup_databricks_api_token_and_endpoint

04

Purpose:
Validates and prepares the Databricks API endpoint and authentication token for
subsequent API calls.
Handles potential errors during setup.

Key Steps:
Constructs the base API endpoint using the provided Databricks workspace URL.
This forms the starting point for constructing specific API calls.

1.

Creates a separate API endpoint specifically for retrieving error messages
associated with failed job runs. This endpoint uses a different API version for
compatibility with the error message retrieval functionality.

2.

Sets up the Databricks authentication token using the provided personal access
token. This token is included in API requests to ensure authorized access.

3.

Returns three values:4.

Function: setup_databricks_job_api_config

api_endpoint: The base API endpoint for Databricks API calls.
api_token: The Databricks authentication token for API access.
api_endpoint_for_error_message: The dedicated endpoint for retrieving
error messages of failed job runs.

05

Purpose:
Orchestrates the setup of necessary components for interacting with the
Databricks Jobs API.
Constructs the API request URL, headers, and payload for fetching job run
details.

Steps:
Fetches the number of job runs to retrieve:1.

Retrieves the num_of_jobs global variable (set in the main code) to
determine the intended number of job runs to fetch.

Builds the API request URL:2.
Formats the API endpoint provided as input to construct a complete URL for
the Jobs API (https://<workspace-url>/api/2.1/jobs).
Prints the generated URL for debugging purposes.

Sets the request headers:3.
Constructs a dictionary containing authentication and content type headers:

Authorization: Embeds the Databricks access token using the Bearer
schema for authentication.

06

07

Content-Type: Specifies that the request payload is formatted as JSON.
 4. Sets the request payload:

Creates a JSON-formatted payload with a single key-value pair:
limit: Stores the number of job runs to retrieve as specified in num_runs.

Prints the payload for debugging purposes.
 5. Returns the API components:

Returns a tuple containing the formatted URL, headers, and payload to be
used for subsequent API calls.

Function: fetch_databricks_job_runs

08

Purpose:
This function retrieves detailed information about the most recent Databricks job
runs. It leverages the Databricks Jobs REST API to fetch data and returns a list
containing extracted details for each retrieved job run.

09

Steps:
API Configuration:1.

The function takes three arguments: url, headers, and payload. These
represent the pre-configured API endpoint URL, authentication headers, and
any additional data required for the request.

Fetching Job List:2.
It constructs a URL to query for a list of jobs (url+"/list").
It sends a GET request using the requests library and retrieves the response.
It checks the response status code (ideally 200 for success).
If successful, it parses the JSON response to extract details about available
jobs, including their IDs.

Extracting Job Run Details (if successful):3.
If the job run details retrieval is successful (status code 200), it parses the
JSON response to extract details for each run, including:

Run ID
Job ID
Run State (Success/Failure)
Run Name (if available)
User Name who triggered the run (if available)
Run Duration
Run Start Time (in milliseconds)
Run End Time (in milliseconds)

For failed runs, it calls another helper function to retrieve the error message
and run page URL.

Building and Returning Results:4.
The function creates a dictionary (extracted_job_run_details_dict) to
temporarily store the extracted details for each run within the current job.
It iterates through each retrieved run and populates the temporary dictionary
with details.
It appends a copy of the populated dictionary to a list
(list_of_extracted_job_runs) to store details for all runs across all jobs.

After processing all jobs and their runs, the function returns the final list containing
extracted details for each retrieved job run.

10

Function: fetch_databricks_failed_job_runs_error_log

Purpose:
This function retrieves specific information about failed Databricks job runs,
specifically the error message and run page URL. It's designed to be called within
the fetch_databricks_job_runs function to gather additional details for failed runs.

Steps:
API Configuration:1.

The function takes two arguments: job_id and run_id. These represent the
unique identifiers for the failed job and its run.
It calls another function (setup_databricks_api_token_and_endpoint), to
retrieve and set up necessary API configuration details like the endpoint URL
and authentication token.

Building API Request:2.
It constructs a specific API URL to query details for the failed job run
({api_endpoint_for_error_message}/jobs/runs/get?run_id={job_run_id}).
It sets up authentication headers with the Databricks access token.

Sending API Request:3.
It sends a GET request using the requests library to retrieve the API response.

Processing Response:4.
It checks the response status code for success (200).

11

If successful, it parses the JSON response.
It confirms that the run state is indeed "FAILED".
If confirmed, it extracts the error message from the state_message field.
It also extracts the run page URL from the run_page_url field.

If the run is not marked as failed, it returns a placeholder message indicating
that no error message was found.
If the API request itself fails (status code not 200), it prints an error message
with the status code.

 5. Returning Values:
It returns two values:

The error message (or a placeholder message if not found)
The run page URL (or "NA" if not available)

Function: send_email_notification

12

13

Purpose:
This function constructs and sends an email notification summarizing the details of
recent Databricks job runs. It leverages the provided list of extracted job run details
and a list of recipient email addresses.

Steps:
Setting Up Email Structure:1.

The function initializes HTML code for the email body, including tables to
display the job run information.
It defines separate HTML table structures for successful runs and failed runs
(to highlight failures).

Sending the Email:2.
The function defines sender email address, SMTP server details (server
address and port), and recipient email addresses.
It constructs a MIME message object with the HTML email body and sets the
subject, sender email, and recipient list.
It establishes a secure SMTP connection using TLS encryption.
It sends the email notification through the SMTP server.
In case of success, it prints a confirmation message.

Benefits:
This approach offers several advantages:

Clear and Concise Reports: Users receive informative HTML emails summarizing
recent job runs, facilitating easier identification of potential issues.
Actionable Insights: Detailed information empowers users to take prompt
corrective actions.
Customization Potential: The solution leverages Python's flexibility, allowing for
further customization of alerts based on specific needs.

About LumenData
LumenData is a leading provider of Enterprise Data Management, Cloud & Analytics
solutions. We help businesses navigate their data visualization and analytics anxieties
and enable them to accelerate their innovation journeys.
Founded in 2008, with locations in multiple countries, LumenData is privileged to serve
over 100 leading companies. LumenData is SOC2 certified and has instituted extensive
controls to protect client data, including adherence to GDPR and CCPA regulations.

info@lumendata.com lumendata.com/contact-us
Get in touch with us: Let us know what you need:

Authors

Ritesh Chidrewar
Senior Consultant - Data Engineering

https://twitter.com/i/flow/login?redirect_after_login=%2FLumenData
https://in.linkedin.com/company/lumendata
https://lumendata.com/contact-us/

