
Informatica MDM SaaS (IICS account) PRODUCT EXPLAINED:

Learn the process of manual testing within the IICS environment,
including the different types and sub-types that are involved to
make sure the final data is free of defects.

WHAT IS MANUAL TESTING?

Customer 360 and Data Integration (Assumption- The user has the required
privileges to access the mentioned services in IICS).

Manual testing is a software testing approach where testers manually validate and
then execute test cases without the use of automated tools or scripts. It involves
human intervention to verify the functionality, usability and quality of a software
application. Here, testers stimulate end-user scenarios and interactions with
system to identify defects or issues in the software.

The process of manual testing typically involves the following steps:

Testers define the testing objectives, create test plans, and develop test cases
based on the requirements and design specifications of the software.

1. Test Planning

Testers execute test cases manually, following predetermined steps and inputs, to
validate the behaviour of the software. They will record the expected and actual
results for each test case.

2. Test Case Execution:

When a defect or an issue is identified during test case execution, testers report the
problem to the development team using a defect tracking system. They provide
detailed information about the defect, including steps to reproduce it, screenshots,
and other relevant data.

3. Defect Reporting:

After the development team addresses the reported defects and releases a new
version of the software, testers retest the resolved issues to verify if they have been
fixed correctly, and then mark them closed.

4. Defect Verification:

Retesting follows the completion of defect fixing by developers. Its purpose is to
validate that the reported defect has indeed been addressed and that the software
is now functioning as expected. This testing focuses on the specific areas or
functionalities that were affected by the bug.

5. Retesting:

Regression testing refers to the process of retesting a previously tested software
application to ensure that any modifications, enhancements, or bug fixes have not
introduced new defects or caused existing functionalities to break. Its purpose is to
verify that the software remains stable and that any changes made to it have not
adversely impacted its overall functionality.

 6. Regression:

Manual testing has its advantages and disadvantages. Some advantages include
the ability to apply human intuition and creativity to uncover complex issues, testing
of negative flows, adaptability to changes in requirements, and cost-effectiveness
for small-scale projects. However, manual testing can be time-consuming,
repetitive, and prone to human error. Therefore, organizations often combine
manual testing with automated testing techniques to improve efficiency and
effectiveness in the overall testing process.

Begin by preparing a test plan that outlines the objectives, scope, assumptions, and
testing approach for the manual testing activities in IICS. Define the test scenarios
and test cases that needs to be executed.

1. Test Plan Preparation:

STEPS FOR MANUAL TESTING IN IICS-

IICS (Informatica Intelligent Cloud Services) is a cloud-based integration platform
provided by Informatica. It primarily focuses on data integration, data
management, and application integration. While IICS is primarily used for data-
related tasks, it also supports various testing capabilities. Manual testing in IICS
can be performed using the following approach:

Execute the test cases manually within the IICS environment. This involves
navigating the IICS user interface, executing the jobs and validating the data
integration processes. Record the test results, including any issues or defects
encountered.

2. Test Case Execution:

If any defects or issues are identified during the test case execution, report them in a
defect tracking system and to the development team. Include all relevant details
such as steps to reproduce, error messages, and screenshots if necessary.

3. Defect Reporting:

Once the reported defects are addressed by the development or support team,
perform retesting to verify if the fixes were successful. Execute the affected test
cases again to ensure that the issues have been resolved and the expected results
are achieved. And then close the defect after the retesting is done.

4. Retesting:

DATA COMPLETENESS CHECKS IN MANUAL TESTING-

Data completeness checks refer to the verification and validation of data inputs or
outputs to ensure that they are complete and contain all the necessary information
required for the software application to function correctly. These checks ensure
that the application handles data appropriately and can process the data
effectively without encountering errors or missing information.

COUNT CHECKS IN MANUAL TESTING-

Count checks is when a tester verifies the correctness of data by comparing the
count of records or entities between different data sources or components within
the integration processes. These checks are particularly useful for validating data
integrity, data synchronization, and ensuring that the expected data volumes are
being processed accurately.

JOB RUNS IN MANUAL TESTING-

Job Runs refer to the execution of integration jobs or workflows within the IICS
platform. Here's how manual testing may be involved in job runs in IICS:

Manual testing may be involved in setting up and configuring the integration jobs or
workflows within IICS. Testers can ensure that the job parameters, connections,
mappings, transformations, and other configurations are correctly defined before
the job is executed.

Job Setup and Configuration:

While job runs are often scheduled to execute automatically based on predefined
schedules or triggers, manual testing may involve monitoring and verifying the
successful execution of scheduled job runs. Testers can check job logs, monitor job
statuses, and ensure that the jobs run according to the expected schedule.

Job Scheduling and Monitoring:

After a job run completes, manual testing can involve verifying the results produced
by the integration job. This can include checking data outputs, file generation,
database updates, or any other expected outcomes of the job. Testers can compare
the actual results with the expected results to ensure that the job has executed
correctly.

Job Results Verification:

Job runs in IICS may encounter errors or exceptions during execution. Manual testing
can involve intentionally triggering or simulating error scenarios to validate the error
handling mechanisms within the integration jobs. Testers can ensure that error
messages are appropriately generated, error recovery processes are followed, and
any required notifications or actions are triggered.

Error Handling and Exception Testing:

Depending on the nature of the integration job, manual testing may involve
validating and reconciling data produced or processed by the job. Testers can
perform data checks, compare data between source and target systems, and
ensure that data integrity and accuracy are maintained throughout the job run.

Data Reconciliation:

RERUN OF SAME JOB IN MANUAL TESTING-

This refers to the process of re-executing an integration job or workflow with the
same configuration and parameters to validate its behaviour and outcomes. This
can be done for various reasons, such as retesting after making changes,
confirming the stability of the job, or reproducing an issue for troubleshooting
purposes.

Here's how the rerun of the same job is typically approached in manual testing in
IICS:

While not strictly related to manual testing, performance testing and optimization
can play a role in job runs. Testers may be involved in analysing the performance of
the integration jobs, identifying bottlenecks, deadlocks and suggesting optimizations
to improve job run times, execution schedule or resource utilization.

Performance Testing and Optimization:

Before rerunning the job, it is important to review and verify the configuration
settings and parameters of the job. Ensure that all the necessary connections,
mappings, transformations, and other components are properly set up and aligned
with the desired test scenario.

Job Configuration Review:

Depending on the nature of the job, it may require specific test data inputs to
reproduce the desired test conditions. Prepare the test data or ensure that the
previous test data used during the initial job run is still valid and appropriate for the
rerun.

Test Data Preparation:

If the job involves data storage or updates, it may be necessary to clear or reset any
remnants of the previous job run's output or impacts. This ensures a clean slate for
the rerun and prevents any interference or contamination of data.

Clearing Previous Run Data:

Execute the job using the same configuration and parameters as the previous run.
This can be done through the IICS interface by selecting the job and initiating its
execution manually.

Rerun Execution:

DATA CORRECTNESS CHECKS IN MANUAL TESTING-

Data correctness checks refer to the process of verifying the accuracy, integrity,
transformation rules and validity of data within a software application. These checks
ensure that the data being processed or stored by the application is correct and
aligns with the expected business rules and requirements. The goal is to identify any
inconsistencies, inaccuracies, or discrepancies in the data and ensure that it meets
the desired quality standards.

In the context of manual testing in IICS (Informatica Intelligent Cloud Services), data
correctness checks like duplicate checks, null checks, invalid date checks, byte size
checks and data validation checks refer to specific types of validation that can be
performed on data within the integration workflows. These checks help ensure the
accuracy and integrity of the data being processed. Here's an overview of duplicate
checks, null checks and other kinds of checks in IICS manual testing, along with
notes on Data Lineage and Delta Validation.

After the rerun is completed, manually validate the results to ensure that the
expected outcomes align with the previous run or the desired expectations. Verify
data outputs, file generation, database updates, or any other outputs produced by
the job to ensure consistency and correctness.

Result Validation:

If the purpose of the rerun is to verify any changes or troubleshoot an issue,
compare the results of the rerun with the results of the previous run. Analyse any
differences or inconsistencies to identify potential issues or improvements.

Comparison with Previous Run:

Maintain proper documentation of the rerun process, including any observations,
issues encountered, and results obtained. This helps in tracking the history of the job
runs and aids in reporting and communication.

Logging and Reporting:

Rerunning the same job in manual testing in IICS allows for the validation of the job's
behaviour, stability, and consistency over multiple executions. It provides an
opportunity to reproduce scenarios, verify changes, and ensure the reliability of the
integration process.

DUPLICATE CHECKS IN MANUAL TESTING-

Duplicate checks are validations aimed at identifying and handling duplicate
records within the data being processed. In IICS, you can manually execute test
cases to verify if the duplicate check logic or transformations are correctly
implemented in your integration workflows. Some common steps involved in
duplicate checks include:

Create test data with a set of records, including some duplicates, that resemble the
real-world scenarios like data duplicates due to multiple reruns.

a. Test Data Preparation:

Execute the integration workflow that includes the duplicate check logic or
transformations. This can involve tasks like data profiling, aggregation, or filtering to
identify and handle duplicate records. When records are loaded, we check them
accordingly.

b. Integration Workflow Execution:

Verify if the integration workflow correctly identifies and handles duplicate records
as per the expected behaviour. Compare the actual results with the expected results
to ensure accuracy.

c. Verification:

NULL CHECKS IN MANUAL TESTING-

Null checks are validations performed to ensure that the data being processed
does not contain null or missing values where they are not allowed or expected. In
IICS, you can manually test the null check logic within your integration workflows.
Here are the steps involved:

Create test data with a mix of records that include null values in fields where they
should be checked or handled.

a. Test Data Preparation:

Execute the integration workflow, paying attention to the null check logic or
transformations. This may involve tasks like data mapping, conditional statements,
or data validation rules. When the records are loaded, we check them accordingly.

b. Integration Workflow Execution:

By performing these duplicate checks and null checks as part of manual testing in
IICS, you can validate the integrity and quality of your data integration workflows,
ensuring that duplicate records are appropriately managed and null values are
handled correctly.

Verify if the integration workflow correctly identifies and handles null values
according to the expected behaviour. Compare the actual results with the expected
results to ensure that null values are appropriately managed. In this case, we can
observe that the few fields are null and are reported accordingly.

c. Verification:

INVALID DATE CHECKS IN MANUAL TESTING-

Invalid date checks involve validating the handling of incorrect or invalid dates
within your integration workflows. These checks ensure that the date-related data
is processed correctly. Here's a general approach to conducting invalid date
checks:

Create test data with various scenarios, including records with incorrect or invalid
dates such as future dates, past dates, or dates in an incorrect format.

a. Test Data Preparation:

Verify if the integration workflow correctly handles the invalid dates as per the
expected behaviour. Ensure that the workflow detects and handles invalid dates
appropriately, such as generating errors or applying fallback strategies.

c. Verification:

DATA SIZE CHECKS IN MANUAL TESTING-

Data size checks involve validating the handling of data sizes or limits within your
integration workflows. These checks ensure that the data being processed adheres
to defined size constraints. Here's an approach to performing data size checks:

Execute the integration workflow that includes date-related transformations or
validations. This may involve tasks like date parsing, date calculations, or date
comparisons. When records are loaded, we check them accordingly.

b. Integration Workflow Execution:

Execute the integration workflow, focusing on tasks that involve data size
considerations, such as data transformations, data aggregation, or data storage.
When records are loaded, we check them accordingly.

b. Integration Workflow Execution:

Create test data that includes various record sizes, such as records with minimal
data, large data volumes, or data exceeding specific size thresholds.

a. Test Data Preparation:

Verify if the integration workflow correctly handles the data sizes according to the
expected behaviour. Ensure that the workflow can accommodate the specified data
sizes without causing issues such as data truncation, data loss, or performance
degradation.

c. Verification:

Execute the integration workflow, paying attention to the data validation logic or
transformations. This may involve tasks like data cleansing, data transformation, or
data enrichment. When records are loaded, we check them accordingly.

b. Integration Workflow Execution:

DATA VALIDATION CHECKS IN MANUAL TESTING-

Data validation checks involve validating the correctness and integrity of the data
being processed within your integration workflows. These checks ensure that the
data meets the defined business rules and quality standards. Here's a general
approach to conducting data validation checks:

Create test data that covers various transformation rules.
a. Test Data Preparation:

The Alternate Identifier Value type is different for the record named Ama Boadu.
Case 1)

Contact value for the record named Katherine Femrite is missing.
Case 2)

Employee ID for record named Asmita Satapathy is missing.
Case 3)

The previous cases all involve defects, but in this case, for record Lionel Messi,
nothing is missing, so no defects are to be reported.

Case 4)

By performing these checks, including duplicate checks, null checks, invalid date
checks, data size checks, and data validation checks, during manual testing in IICS,
you can ensure that the data processed within your integration workflows adheres
to quality standards, integrity rules, and specific data constraints.

Verify if invalid or non-compliant data is handled accordingly, such as generating
errors, applying data cleansing rules, or triggering data rejection mechanisms.
Report what’s incorrect accordingly.

c. Verification:

DATA LINEAGE IN MANUAL TESTING-

Data lineage refers to the ability to trace the movement and transformation of data
from its origin to its destination. In the context of manual testing in Master Data
Management (MDM), data lineage can help in understanding how data flows
through different stages of data load and ensure the accuracy and integrity of the
data.

By incorporating data lineage into manual testing in MDM, one can establish a
clear understanding of how data moves and transforms within the system, making
it easier to identify and resolve issues related to data quality, accuracy, hierarchy
and completeness.

The data lineage information gathered during testing should be documented and
shared with relevant stakeholders. This helps in understanding the test coverage,
identifying areas of improvement, and ensuring data integrity throughout the MDM
system.

Reporting and Documentation:

DELTA VALIDATION IN MANUAL TESTING-

Delta Validation is a type of testing performed to validate updates on data. In the
context of manual testing in Master Data Management (MDM), delta testing
focuses on verifying the impact of changes on the data after updates.

Here's how data lineage can be incorporated into manual testing in MDM:

Based on the data lineage map, design test cases to cover the key data elements
and their associated transformations. Test scenarios should focus on verifying the
accuracy and completeness of the data at each stage. Validation of data hierarchy
in MDM.

Test Design:

During the test planning phase, it's important to identify the data sources and
understand how the data is generated, transformed, and stored within the MDM
system. This involves documenting the data flow and creating a data lineage map.

Test Planning:

During test execution, testers should track and document the data lineage as they
interact with the MDM system. This includes capturing the input data used for
testing, the operations performed on the data, and the resulting output.

Test Execution:

After executing tests, it's important to validate the data produced at each stage
against the expected results. This involves comparing the actual output with the
anticipated output based on the data lineage. Any discrepancies should be logged
and reported as defects.

Data Validation:

Once all of that is done, record and report the defects to the concerned team, and
once fixed, do a retest to make sure the defects have been fixed before closing
them.

Here's how delta testing can be carried out in manual testing in MDM:

The first step in delta testing is to identify the changes made to the data.

Identify Changes:

Based on the impact analysis, create test cases that cover the affected columns or
scenarios. Test cases should focus on validating the functionality and data integrity
after the changes have been implemented.

Test Case Design:

Execute the delta test cases by performing the necessary actions to trigger the
updated functionalities or processes. This may involve creating, modifying, or soft-
deleting data records.

Test Execution:

Perform an impact analysis to understand how the changes will affect the existing
data.

Impact Analysis:

During test execution, verify the data integrity by comparing the expected data
outcomes with the actual data outputs. Validate that the data is correctly updated,
transformed, and propagated after the changes.

Data Validation:

In addition to the delta testing, it's crucial to perform regression testing to ensure
that the existing functionalities and processes are not adversely affected by the
changes. Execute the existing test cases for validation too.

Regression Testing:

Delta testing in manual testing for MDM allows you to validate the impact of
changes made to the data and ensure the reliability and integrity of data after
updates. It helps in identifying any potential issues or discrepancies that may arise
due to the changes, allowing them to be addressed promptly.

LumenData is a leading provider of Enterprise Data Management, Cloud & Analytics
solutions provider. We enable enterprises to modernize their legacy data
infrastructure and derive greater insights into their business. Founded in 2008, with
locations in multiple countries, LumenData is privileged to serve over 100 of the
world’s leading companies, including KwikTrip, Versant Health, US Food & Drug
Administration, US Department of Labor, Cummins Engine, BCG, and others.

LumenData is SOC2 certified and has instituted extensive controls to protect client
data including adherence to GDPR and CCPA regulations.

M E E T O U R A U T H O R S

ABOUT LUMENDATA:

Get in touch to discuss how we can facilitate data-driven transformation for your
organization.

lumendata.com

Contact us +1 (855) 695-8636
info@lumendata.com

Amrit Roy
Associate Consultant

Jayachandra B
QA Lead

http://www.lumendata.com/
http://www.lumendata.com/
http://www.lumendata.com/
https://lumendata.com/contact-us/
mailto:info@lumendata.com

